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T E C H N I D Y N E  I N C O R P O R A T E D  

FOREWORD 

TECHNIDYNE INCORPORATEM - THE MARQUARDT CORPORATION 

This program was undertaken as an e f fo r t  of the above team with 
Technidyne Incorporated as the prime contractor; 
b l e  f o r  carrying out v i r tua l ly  a l l  of the laboratory work i n  i t s  own 
fac i l i t i es  

Technidyne was responsi- 

The Marquardt Corporation (ASTRO Division) was the subcontractor 
member  of the team, providing thermochemical assistance, gel-usage 
c r i t e r i a ,  guidance i n  the handling properties of l i qu id  hydrogen, and 
engineering support i n  the design of the l i qu id  hydrogen cryostat. 

* Subsidiary of Aeroprojects Incorporated 
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T E C H N I D Y N E  I N C O R P O R A T E D  

ABSTRACT 
'1 L? ,330 

Gel technology developed mainly fo r  conventional l iqu id  propellants has 
been applied t o  li uid hydrogen (LH2).  

lems i n  gel lant  selection. 
gations t o  gel lants  of the par t iculate  type, including those created i n  s i t u .  

The low boiling point (20.3"K), low 

Solubi l i ty  factors  tended t o  l i m i t  t h e  invest i -  
density (0.07 g/cm s ) and low degree of association of LH2 posed unique prob- 

Par t ic le  spacing considerations for  the f i n e s t  i n i t i a l l y  available par- 
t i cu l a t e  ge l lan ts  (such as carbon black o r  s i l i c a )  indicated tha t  on the 
order of LO w/o gel lant  would be required, because of the high density 
r a t i o  of gel lant  t o  LH2. 

The most effect ive commercially available par t iculate  gellant,  pyro- 
genic s i l i c a  ( i n  the f i n e s t  par t ic le  size, 7 mp) formed gels  i n  LH2 a t  a 
loading of 35-37 w/o, or  1.8-1.9 v/o ( i .e . ,  s l i g h t l y  l e s s  than predicted) 
Such a concentration of i n e r t  additive would lead t o  serious decrement i n  
propulsion performance. Nevertheless, the ge l  was useful f o r  f l o w  and 
cer ta in  other property simulation. The rheological properties of several  
such ,gels, a t  20"K, were comparable t o  those of l iqu ids  gelled a t  ambient 
temperatures. The yield s t resses  ( a measure of consistency) were i n  the 
500-1000 cbrnss/cm2 range which appears suitable f o r  l i qu id  propellants. 

Hence, new gellants were required. 

A search f o r  high-energy, low-density so l id  fue ls  which might be 
preparable i n  the u l t r a f ine  par t ic le  s i z e  requis i te  fo r  gelat ion revealed, 
f o r  example, l i thium borohydride (LiBHk, 0.66 g/cm3) . Calculations, without 
optimization, have shown tha t ,  even w i  h as much as 20 w/o (2.56 v/o) of 
L iBH4 loading, LH2 performance degradation with LOX would amount t o  only 
4.5 percent, o r  w i t h  LF2 only 2.5 percent. 

Preliminary preparations of fuel-gellants were made f o r  screening 
purposes, a l b e i t  the par t ic le  s izes  were la rger  than optimal. 
were made as fo l lows :  
aluminum hydride 86 w/o (32 v/o) . 
gel  formation a t  7 3  w/o (7 .5 v/o), 
were b r i e f l y  examined and appear promising include boron, boranes, methane 
( i n  s i tu) ,  hydrazine, and cer ta in  l i g h t  metal hydrides. The ultimate choice 
depends on such fac tors  as low density, high energy contribution, and ease 
of preparation of par t ic les  i n  sizes below 50 mp. 

LH2 ge ls  
l i thium borohydride 67 w/o ( 1 7  v/o) , and l i t h i u m  

Aluminum f lake gave some evidence of 
Other candidate fuel-gellants wlrich 

Several of the above LH2 gels  showed reduced evaporation r a t e s  (25 
percent of t h a t  of neat LH2),  resistance t o  vibratory acceleration ( 3  G, 
120 cps) and shock acceleration (14 G) . 

I n  t h i s  work a laboratory cryostat  was used which provided three 
features  not generally included in LH2 equipment -- fuli-depth visual  
observability, high-shear mixing, and viscometry. 
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T E C H  N I D Y  N E I N C O R P O R A T E D  

I. INTRODUCTION 

Thixotropically gel led l iqu id  rocket propellants ( thko t ropes )  , which 
behave as  sol ids  under the low s t resses  of  storage and bulk transportation, 
but t rans ien t ly  l iquefy during pumping or pressurized f low,  have been the 
subject of increasing s c i e n t i f i c  investigation over the l a s t  7 years. 

O f  special  pertinency t o  the task of gel l ing l i qu id  hydrogen, the 
Technidyne group gelled l iqu id  nitrogen ( the  f irst  reported cryogenic gel)  
several  years ago, and observed t h a t  the evaporation r a t e  was reduced more 
than three-fold (Figure 1). Other l iquefied gases such as ammonia, methyl 
chloride, Freons, and low-boiling hydrocarbons had been gelled a t  t h a t  
time. It was postulated tha t  evaporation should be reduced even more with 
l a rge r  scale  tankage. 

Reduced evaporation losses  are  par t icular ly  beneficial  i n  gelled 
cryogenic propellants. Performance advantages of gelled l i qu id  propellants 
i n  general appear t o  include damping of sloshing o r  of resonant vibration, 
and retent ion of shape and posit ion (e.g., as i n  a weightless environment). 
The t ens i l e  properties of gels  should f a c i l i t a t e  t h e i r  t ransfer .  

Other advantages are i n  safety and damage control.  Gelled l iquids,  
on sp i l l ing ,  remain i n  a p i l e  ra ther  than flowing, and vaporize much more 
slowly than ungelled l iqu ids .  They may be removed by solid-materials- 
handling equipment. 
by a f ly ing  object, leakage i s  minimized and shock e f f ec t s  are damped. 

was aimed a t  real iz ing a l l  of the general advantages of thixotropic pro- 
pellants,  as well as showing reduced evaporation losses .  Looking beyond 
the scope of t h i s  task, s tab i l ized  s lurry gels  i n  l i qu id  hydrogen may of fer  
a means of increasing the propellant density of  hydrogen with concomitant 
improvement i n  over-all system performance . 

I n  the event t h a t  a tank ruptures o r  i s  penetrated 

This exploratory formulation study i n  the gel l ing of l i qu id  hydrogen 

1 
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T E C H N I D Y N E  I N C O R P O R A T E D  

11. THE0RF:TICAL CONSIDERATIONS 

A s  a l iquid,  hydrogen is  unique. It i s  weakly associated and has  a very 

I n  general, i t s  physical properties seem t o  be in t e r -  
small spread between freezing and boiling points. 
are  a lso extremely low. 
mediate between those of the inept gases and those of other cryogenics. 
i s  reported t o  be incapable of dissolving any substance with the exception 
of helium. 

I t s  density and viscosi ty  

It 

No evidence has  been reported of the existence of l i qu id  hydrogen 
molecules la rger  than H2. 
gests  an unusually low degree of association (see Table I). 
doubtedly a f ac to r  i n  the l o w  solvent power of l i q u i d  hydrogen. 

Furthermore, the Trouton constant of 10.5 sug- 
This i s  un- 

The d i e l ec t r i c  constant of normal l iquid hydrogen a t  i t s  boiling point 
i s  1.23 ,  indicating very low polar i ty  and l i t t l e  o r  no ionization. 

mese properties, combined w i t h  the low-temperature operating range, 
present challenging problems i n  ge l  preparation and characterization. 
s t a t i c  and rheological charac te r i s t ics  of any gel led propellant require 
detailed def ini t ion using the best  viscometric techniques, i n  order t o  avoid 
anomalous r e su l t s  when re la t ing  t o  end-use studies.  This i s  of paramount 
importance i n  working i n  the cryogenic temperature range, and specialized 
adaptations of instrumentation were required. 

The 

A s  a r e su l t  of e a r l i e r  work i n  t h i s  laboratory (l)* gel lants  have 
been divided i n t o  "swellable" and particulate categories. 
"swellable", consisting of long-chain macromolecules with lyophi l ic  sub- 
s t i t u e n t  groups, owes i t s  effectiveness t o  the a f f i n i t y  of these groups 
for ,  and p a r t i a l  so lub i l i t y  in ,  the l iquid being gelled. 
behavior has been found w i t h  l i qu id  hydrogen, and it appears doubtful t h a t  
swellable gel lants  w i l l  prove useful i n  t h i s  application. 
ge l lan ts  are completely insoluble ul t raf ine par t ic les ,  which gel  through a 
mechanism of in te rpar t icu la te  forces, often influenced by surface chemistry. 
To the extent t h a t  the e f f ec t  of low dielectr ic  constant on gel l ing a t  20°K 
may be similar t o  i t s  e f f ec t  a t  20"C, one would expect the high-surface type 
of par t icu la te  gel lant  t o  be indicated, and the polymeric type t o  be contra- 
indicated. 

The c lass  termed 

No such so lub i l i t y  

"Particulate" 

The minimum quantity of a particulate ge l lan t  was shown t o  be a func- 
t i o n  of pa r t i c l e  size,  pa r t i c l e  density, and l i qu id  density. There must 
a l so  be the  proper in te rac t ion  between the l i qu id  and the surface chemistry 
of the pa r t i c l e  f o r  the  gel lant  t o  be effective. For example, co l lo ida l  
s i l i c a ,  which is  a good gel lant  f o r  almost a l l  non-polar and moderately 
polar l iqu ids ,  w i l l  not gel  highly polar l iquids ,  such as  water, without 
the addi t ion of a t h i r d  component t o  a l te r  the in t e r f ac i a l  tension and 
surface charges (1) ( 2 ) .  

* Numbers i n  parentheses designate references l i s t e d  a t  end of report .  
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Table I 

ABBREVIATED TABLE OF PROPERTIES OF CERTAIN LIQUIDS 

Liquid Heat of 
Density Vaporization Boiling 
a t  b.p . ,  a t  b.p., Point, Trouton Thixotropically 

Liquid g/ml cal/mol "K Constant Gelled 
Hydrogen 0.07 214.8 20.3 10.5 With Particulate* - 

H e 1  ium 0.125 19-56 4.2 4.6 

Nitrogen 0.81 1322 .o 7704 17.1 With Particulate 

Me thane 0 * 424 1945 .O 111.7 17.4 With Particulate 

"3 0.68 5576 .O 239.8 23.3 With Part iculate  

0.958 9735 .o 373.16 28.3 With Particulate 
o r  Swellable 

H20 

* As a resu l t  of t h i s  contract. 

4 



T E C H  N 1 D Y  N E I N C O  R P O  R A T  E D 

The search f o r  gel lants  f o r  hydrogen, therefore, has been targeted 
primarily toward insoluble submicron par t ic les  of low density, and w i t h  
surface chemistry such tha t  they exhibit  an a f f i n i t y  f o r  hydrogen. If 
possible, the ge l lan t  should a l s o  have fue l  value, and fue l s  which are  
l iqu ids  or  gases a t  ambient temperatures can be considered candidate gel- 
l an ts ,  since they w i l l  be so l id  a t  l iquid hydrogen temperatures. 

The density of l i qu id  hydrogen (0.070 g/cm3 a t  i t s  boiling point) 
i s  lower by nearly a f u l l  order of  magnitude than tha t  of any other l i q u i d  
f u e l  which has been gelled. 
s ize ,  pa r t i c l e  density, and l iqu id  density has been developed i n  our lab- 
oratory, 
t ing  ge l lan t  density against  par t ic le  size, w i t h  l i q u i d  density as  the 
parameter. 
contrasted w i t h  a correlat ion of experimental data f o r  a l i qu id  of den- 
s i t y  approximately 0.9 g/cm3. A n y  part iculate  ge l lan t  of a s ize  and den- 
s i t y  which f a l l s  below the appropriate l i q u i d ' s  curve i s  a candidate gel- 
l a n t  i f  i t s  surface charac te r i s t ics  permit a f f i n i t y  w i t h  the l iqu id .  

An empirical re la t ionship between pa r t i c l e  

Gellant pa r t i c l e  spacing correlates v i a  a family of curves plot-  

Figure 2 shows such a curve computed f o r  l i qu id  hydrogen and 

For example, s i l i c a  and carbon black, w i t h  dens i t i t es  of 2.2 and 
1.8 respectively, are available i n  par t ic le  s izes  i n  the neighborhood of 
7 mp. These are adequate gel lants  f o r  l iquids  of higher density, but 
would need t o  be prepared i n  a s i ze  range below 3.5 t o  4.5 mp t o  be effec-  
t i ve  i n  l i q u i d  hydrogen a t  5 w/o gellant.  

Alternately, i f  one accepts the present apparent lower s ize  l i m i t  
of commercially available materials,  7 mp, a density of about 0.6 would be 
the m a x i m u m  f o r  candidate l i qu id  hydrogen ge l lan ts  (which would function 
a t  5 w/o o r  lower concentrations). A few materials e x i s t  i n  t h i s  density 
region, but not i n  the small size,  e.g., l i thium and some of i t s  compounds, 
ce r t a in  beryllium compounds, cer ta in  organics, and s o  for th ,  Higher con- 
centrations than 5 w/o would be tolerable  i f  the ge l lan t  contributed t o  
the propulsion performance of hydrogen. It therefore appeared desirable 
t o  seek u l t r a f i n e  pa r t i c l e s  of substances w i t h  very low densit ies,  and 
preferably with some thermodynamic contribution t o  the Isp. 
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Figure 2 

LIMITING RELATIONSHIP BETWEEN PARTICLE DENSITY AND DIAM%TER 
OF PARTICULATE GELLANTS FOR EFFECTIVENESS AT 5 W/O MAXIMUM 

(Based on achieving a m a x i m u m  center-to-center spacing of 30 mp) 

p~ = Approximately 0.9 

Lower Size L i m i t  of Commercial Gellants . 

Liquid H2(% = 0.071) 

I I  
I I  
! I  

I I  
I I I I I 
1 2 3 4 5 6 

Ps = Density of  Gellant (g/cm3) 
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111. GEXLANT INVESTIGATIONS 

A. Screening and Evaluation of Candidate Gellants 

The foregoing theoret ical  considerations and analysis of the problems 
indicated t h a t  the ge l lan ts  t o  be considered f e l l  i n to  roughly three cate- 
gories, as follows: 

Existing par t icu la te  gellants,  many of which (save possibly 
carbon black) are non-energy-contributors, 

Solid fue ls .  

Liquid and gaseous fuels .  

I n  a l l  cases it was recognized as expedient, and planned as a p a r t  of t h i s  
program, t o  evaluate gel lants  as f u l l y  as possible i n  r e l a t ive ly  eas i ly  
handled simulant l iquids.  This would serve t o  narrow the se lec t ion  f o r  
t r i a l  i n  l iqu id  hydrogen. Normally, gellant screening and evaluation would 
be conducted using l iqu ids  with a range o f  po lar i t i es ,  from non-polar (e.g.9 
hydrocarbons) through intermediate polar i ty  (e. g ., UDMH) and high polar i ty  
(e.g., hydrazine). 
l iquids ,  and t o  approach the simulation o f  other properties of hydrogen. 

I n  t h i s  case it was necessary only t o  use non-polar 

No sui table  l i qu id  i s  available which simulates a l l  of the per t inent  
properties of l i qu id  hydrogen (only l iquid helium approaches it i n  density). 
However, there  are some l iqu ids  w i t h  properties between those of hydrogen 
and those of l iqu ids  whose behavior w i t h  ge l lan ts  has been studied exten- 
sively.  Liquid nitrogen has intermediate physical properties and i s  cryo- 
genic, and the l i g h t e r  saturated hydrocarbons have some chemical s imilar i ty ,  
with some intermediate physical properties. Both are non-polar, as  i s  
hydrogen, and are  r e l a t ive ly  poor solvents. 

1. Effect of Hydrocarbon Density on Gellant Quantity 

Investigations i n t o  the mechanism of gell ing by par t icu la te  gel- 

However, ge l lan t  sur- 
lants had shown the calculated particle-to-particle spacing t o  have a m a x i -  
mum value f o r  a given par t icu la te  gellant specimen. 
face  chemistry and other fac tors  play a ro le  i n  the behavior of various 
types of ge l lan t  preparations (see Section 11, above). 
required amount of a given gellant,  used within a family of chemically re- 
l a t e d  l iquids ,  i s  approximately constant on a volume f r ac t ion  basis  f o r  
ge l s  of comparable y ie ld  stress. If the density of the l i qu ids  within the 
family va r i e s  greatly,  those of lower density w i l l  require r e l a t ive ly  
higher weight percentages of gel lant .  

This means t h a t  the 

7 
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Data per t inent  t o  the l iqu id  hydrogen gelat ion problem have b en 
obtained and are shown i n  Table 11. Normal heptane (density 0.684 g/cm 3 ) 
over 500 dynes/cm J Liquid methane (density 0.415 g/cm 4 ) , which has the 
requires about 9 e l  with y ie ld  s t r e s s  

highest hydrogen content of any hydrocarbon, was gel led a t  i t s  boiling point 
(-161.S"C) as a simulant f o r  l i qu id  hydrogen. 
proceed normally and require9 13.2 w/o of carbon black Type AB t o  a t t a i n  a 
y i e ld  stress of 500 dynes/cm The increase i n  ge l lan t  quantity ( i n  terms 
of w/o) needed f o r  the l i g h t e r  l iqu ids  supports the e a r l i e r  observations of 
the r e l a t ive  constancy of interpar t iculate  distance. 

/o of carbon black Type AB t o  form a 

The gelat ion appeared t o  

If one may assume t h a t  l iqu id  methane and l i qu id  hydrogen w i l l  
i n t e rac t  s imilar ly  with gel lants ,  the quantity of carbon black (Type AB) 
needed can be estimated. Extension of  the above data t o  l iqu id  hydrogen 
predicted t h a t  on t h e  order of 45 w/o of acetylene black would be required 
t o  ge l  it. 
c ip ien t  ge l  a t  28 w/o, the maximum amount t r ied .  
pa r t i c l e  size, and/or a lower-density gellant, would be needed f o r  a s a t i s -  
fac tory  ge l  a t  an acceptably low weight percent. 

Later  i n  t h i s  report  it w i l l  be seen t h a t  LH2 formed an in- 
Further reduction i n  

2. Existing Particulate Gellants 

Norm 1 heptane (p = 0.68 g/cm 3 , b.p. = 98°C) and l iqu id  nitrogen 
(p = 0.81 g/cm 8 , b.p. = -196°C) were used t o  examine the action of seven 
selected par t icu la te  gel lants  t ha t  had not been evaluated with these l iqu ids  
heretofore. 

A l l  trial ge l lan ts  were d r i ed  and outgassed by applying high 
vacuum (<0.25 mm Hg) a t  elevated temperature and releasing the vacuum with 
dry nitrogen, repeated f o r  a t o t a l  of three times. These precautions were 
applied t o  remove adsorbed a i r  and moisture.  The gel l ing experiments were 
conducted i n  a dry box which was purged with dry nitrogen, and the motor 
f o r  the mixer was driven by dry nitrogen instead of a i r ,  t o  prevent intro-  
duction of oxygen o r  moisture by accidental leakage. 

The potent ia l  gel lants  used and the r e su l t s  obtained are l i s t e d  
i n  Table 111. 
alumina, and possibly by pyrogenic alumina and t i t an i a .  Thixotropic gels 
i n  l i qu id  nitrogen, with s ign i f icant  yield s t resses ,  were formed with 
acetylene black a t  5.5 w/o, with a conductive furnace (carbon) black, a t  
8.5 w/o and with 7 mp s i l i c a  a t  4.6 w/o. 
i n  the proper pa r t i c l e  size f o r  gelling, s e t t l e d  out instead of dispersing, 
indicat ing t h a t  surface-active th i rd  components might be needed t o  assist 
i n  ge l  formation. 

Heptane appeared t o  be gelled by the carbon black, and f lake  

The aluminas and t i t an i a ,  though 

By measurement with a penetrometer, yield s t resses  were determined 
f o r  the successful LN2 gels, and are l i s t e d  i n  the l a s t  column of Table 111. 

8 
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Table I1 

RELATIVE G E Z L A N D  CONCENTRATIONS 
FOR CaMPARABLE GEL PROPERTIES 

Yield Liquid 
S t ress  Density Gellant Required 

w / o  - d o  
2 3 d/cm g/cm 

Heptane 550 0.684 9 3e4 

Me t h  me  500 0 415 13.2 3.2 

LH2 0.070 45* 3.2* 

* Carbon black Type AB, 42 mp average diameter. * Calculated from the aliphatic hydrocarbon data. 

9 
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Table I11 

BEHAVIOR OF CANDIDATE PARTICULATE GELLANTS I N  
n-HEPTANE AND LIQUID NITROGEN 

Observation Yield 
S t ress  of 
LN2 Gel  

Nominal 
Par t ic le  

Size 
w 
30 

Density n-Kept ane 

W O )  

Thic kene d 
a t  1 2 . 5  

Liquid N 2  

(W/O) 

Se t t l ed  out, 
wetted 

1 

g/cmJ 

3.6 
Material 

Alumina 
(pyrogenic) 

Alumina (lamellar)  5000 x 20 3.5-3.9 Gel a t  
8-10 

Set t led  out, 
wetted 

Carbon Black (HCC) 1-75 7 Thin gel  
a t  15 

Set t led  out, 
wetted 

1.75 Conductive Furnace 
(Carbon) Black 

29 Gelled a t  
8.5 

370 -- 

Acetylene Black 42 Gel a t  9 Gelled a t  
5.5 

300 

Si l i ca ,  H-5 7 2.2 Gel at  6 380 Gelled a t  
4.6 

Titania, P-25 33 4.26 Thickened 
a t  12.5 

Thick a t  
10-15 

--- 

lo 
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3. Sol id  Fuels as Gellants 

Three fue l s  which have shown promise as  gel lants  i n  other systems 
They are amorphous boron, 
Light metal hydrides and an  

(4) were t r i e d  as ge l lan ts  i n  l i qu id  nitrogen. 
fine-ground boron carbide, and flake aluminum. 
u l t r a f ine  spherical  aluminum were a l so  investigated. 

a. Boron - 
Two grades of amorphous boron were t r ied .  The first i s  a 

standard grade, of 90-92 percent purity, and average pa r t i c l e  size 1 p, and 
the second a higher puri ty  (94-97 percent) grade of average pa r t i c l e  s ize  
1 . 2  p. 
pected t o  form ge ls  a t  concentrations below 35 w/o, but success a t  t h i s  
l eve l  would j u s t i f y  attempts t o  prepare u l t ra f ine  powder. 

Because of t h e i r  r e l a t ive ly  large pa r t i c l e  size,  they were not ex- 

Using the special  mixer designed f o r  the cryostat, but i n  
an ordinary Dewar flask,  portions of the boron were added t o  l i qu id  nitro- 
gen u n t i l  thickening was apparent. Then smaller portions were added, with 
pauses established f o r  observation of gel-like behavior. 

The standard amorphous boron gave a ge l  with apparent y ie ld  
stress, estimated t o  be 300 dynes/cm2, and thixotropy a t  33 w/o. 
pur i ty  boron did not show such behavior even up t o  48 w/o, but s e t t l e d  out 
when the mixer was stopped. 

The higher 

Boron appeared of possible i n t e r e s t  as a candidate high- 
A possible source of u l t r a f ine  boron energy fuel-gellant f o r  hydrogen. 

powder is being investigated, f o r  future  t r i a l s  (4) .  
(1) Boron Grinding 

Attempts were made t o  reduce the s ize  of the amorphous 
This boron (90-92 percent puri ty)  which gelled l i qu id  nitrogen a t  33 W/O. 

boron had a pa r t i c l e  s i ze  of about 1 p, with aggregates extending t o  20-30 p. 
Since it was not protected from a i r  during shipment, the surface i s  probably 
oxidized. It was fu r the r  ground i n  a pebble m i l l  under nitrogen, a t  near 
liquid-nitrogen temperature. 
aggregates were well broken up. 

Microscopic examination revealed tha t  the 

When t r i ed  as a gellant, the  m i l l e d  boron fa i led  t o  
ge l  l i q u i d  nitrogen a t  35 w/o. 
ted, and t h i s  normally should have decreased the amount needed f o r  gell ing.  
However, the f resh  surfaces exposed by the grinding, perhaps d i r ec t ly  o r  
through reaction, have o f f se t  the gain achieved by pa r t i c l e  s ize  reduction. 
This underscores the importance of t h e  surface chemistry of the pa r t i c l e s  
f o r  optimum gel l ing efficiency. 

Some par t ic le  s i ze  reduction had been effec- 

11 
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b. Boron Carbide 

Abrasive grade boron carbide is  available i n  a 4-8 p par t i c l e  
size. Under the same conditions as wi th  boron, above, t h i s  material  thick- 
enad l i q u i d  nitrogen a t  41.4 d o ,  showing evidence of y i e l d  s t r e s s  and 
shear-thinning . 

Boron carbide w i l l  a l so  be considered a candidate energetic 
f 'uel-gellant f o r  l i qu id  hydrogen. 
r en t ly  available,  preparations might be more readi ly  accomplished than f o r  
elemental boron since boron carbide is more i n e r t  and more f r i ab le  than 
boron. 
as  a ge l l an t  f o r  l i qu id  hydrogen. 

Although f i n e r  pa r t i c l e s  are  not cur- 

Presently available boron carbide i s  obviously 'too la rge  f o r  use 

c. Aluminum 

Aluminum f lake  of the f i n e s t  p a r t i c l e  s ize  available (ap- 
proximately 20 1-1 x 0.04 p) was t r i e d  a s  a ge l lan t  i n  l i qu id  n' t r o  en. 
formed a ge l  a t  31.8 w/o, with  a y ie ld  s t ress  of 390 dynes/cm , and shear- 
thinning properties.  

It 3 g  

The f lake  aluminum was known t o  contain a t r ace  amount of 
s t e a r i c  acid ( a  lubricant  i n  the forming process) 
by extract ion wi th  hexane, the aluminum flake would no longer ge l  l i qu id  
nitrogen. 

When t h i s  was removed 

An u l t r a f ine  spheroidal aluminum (average diameter 30 mp), 
passivated by oxidation t o  the point where it was non-pyrophoric, was t r i e d  
without success as  a ge l lan t  i n  l i qu id  nitrogen. Similar s ized material 
which had not been passivated was t r i e d  in  l i qu id  nitrogen w i t h  the same 
re su l t .  No thickening occurred up t o  50 w/o. 

d. Lithium Borohydride (LiBH),)  

Lithium borohydride offers three possible advantages as  a 
pa r t i cu la t e  ge l lan t  f o r  l i qu id  hydrogen: It w i l l  contribute energy, as  a 
fuel ;  it contains a high percentage of hydrogen, and hence may have the 
r equ i s i t e  surface a f f i n i t y  f o r  l iqu id  hydrogen; and it has a very low den- 
s i t y  (0.66 g/cm3) which should minimize the w/o needed f o r  gel l ing and/or 
permit a s l i g h t l y  l a rge r  pa r t i c l e  size t h a n  denser gel lants .  Calculations 
of i t s  influence on Isp are shown i n  Section V. 
prepare it i n  pa r t i c l e  s ize  f i n e  enough f o r  ge l l ing  are  described under Sec- 
t ionB. According t o  Figure 2, pa r t i c l e s  averaging 6.5 mp i n  s ize  would be 
necessary t o  gel  LH2 a t  5 w/o. 

Preliminary e f f o r t s  t o  

e. Lithium Aluminum Hydride (L iAlHL)  

Lithium aluminum hydride has the same three potent ia l  ad- 
vantages a s  l i t h i u m  borohydride as  a gel lant  f o r  l i q u i d  hydrogen, although 
t o  a l e s s e r  extent.  
per u n i t  mass, i s  s l i g h t l y  lower than t h a t  of l i thium borohydride). It 
was more r ead i ly  available a t  the beginning of the program, and it was 

(I ts  density i s  0.92 g/cm3 and i ts  heat of combustion, 

12 
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theref ore used f o r  working out precipi ta t ion procedures, as  described under 
Section B. 
LiAlH4 was discontinued. 

When it became apparent t ha t  LiBH4 was more promising, work on 

f. Other Sol id  Fuels 

In  a concurrent program i n  our laborator ies  (h) ,  various 
high-energy so l id  f u e l s  are being investigated as candidate ge l lan ts  f o r  
conventional l iqu id  propellants, ranging from the non-polar hydrocarbons 
t o  highly polar hydrazine. 
hydrocarbons, should a l s o  be considered candidate ge l lan ts  f o r  LH2. 

Some of them, which look promising i n  t h e  

Two of them, boron and boron carbide, have been screened 
i n  l i q u i d  nitrogen and are discussed above (a.  and b.) . 
show poten t ia l  f o r  hydrogen are  Olane 58, and d i l i t h i u m  acetylide (Li2C2).  
Pertinent gel l ing data are  as fo l l aws :  

Two others which 

Par t ic le  Size G e l  

3-186 
s-168 
S-217 

Dilithium Acetylide 

Ethylenediamine complex 
Non-complex, generated i n  s i t u  

J 

-325 mesh No G e l  
-400 mesh 50 w/o (n-heptane) 
3-5 P 22 w/o (n-heptane) 

35 w/o (n-heptane) 
10 w/o (hexane) 

The non-complexed d i l i t h iwn  acetylide was formed by passing a 
I so la t ion  of stream of  acetylene in to  a solut ion of butyllithium i n  hexane. 

t h i s  p rec ip i ta te  i n  the d r y  s t a t e  presented ce r t a in  hazards, so the dry,  
s tab le  ethylenediamine complex was used f o r  the f i r s t  ge l l ing  t r i a l  i n  l i qu id  
nitrogen. 
300-400 dynes/cm2 and good shear-thinning properties.  

A gel was formed a t  28.5 w/o, w i t h  an estimated yield s t r e s s  of 

4. I n  S i t u  Gelation, U s i n g  Liquid and Gaseous Fuels 

The common processes f o r  making pa r t i c l e s  i n  the <0.1 p s ize  range 
nearly all consis t  of generating the material i n  the vapor phase under con- 
d i t i ons  such t h a t  it w i l l  condense immediately as  a sol id .  
and pyrogenic s i l i c a  and alumina are examples of gel lants ,  used i n  t h i s  in- 
vestigation, which are made i n  t h i s  way. 
condensation has been used f o r  s imilar  preparation of u l t r a f ine  pa r t i c l e s  
of metals such a s  aluminum, nickel, and iron. 

Carbon blacks, 

Additionally, vaporization and 
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It appeared logical ,  therefore, t o  apply t h i s  technique t o  ce r t a in  
somewhat energetic gaseous and l iquid fuels, since they might be caused t o  
condense i n  t h e  desired u l t ra f ine  par t ic le  s i ze  upon sudden exposure t o  the 
low temperature i n  the l i qu id  hydrogen cryostat. 

a. Pentane 

As a first experiment i n  i n  s i t u  formation of ge l lan t  par t ic les ,  
n-pentane was introduced i n t o  l i qu id  nitrogen by bubbling i n  gaseous nitrogen 
saturated with pentane vapor. 
nitrogen, and showed a thickening effect ,  but freezing out i n  the feed tube 
occurred. It appears t h a t  with controlled nucleation conditions, gelat ion 
by t h i s  technique might be possible. 

Fine c rys ta l s  of pentane formed i n  the l i q u i d  

b. Propane 

Since propane freezes a t  -19OoC, which i s  above the boiling 
point of nitrogen (-196"C), it wag used i n  an exploratory experiment t o  
simulate the methane/liquid hydrogen system. 
nitrogen, was bubbled i n t o  l i qu id  nitrogen i n  an attempt t o  form u l t r a f ine  
c rys t a l s  of so l id  propane. The propane d i d  not sol idify,  but formed a 
l i q u i d  l aye r  which f loa ted  on the nitrogen. 
l aye r  exis ted a t  the interface which prevented adequate cooling of the 
propane, o r  it may have been supercooled. 

Propane gas, mixed w i t h  dry 

Possibly an insulat ing gas 

To provide nucleation s i t ee  f o r  the c rys t a l l i za t ion  of the 
propane, s m a l l  amounts of pyrogenic s i l i c a  and of acetylene black were 
euepended i n  l i qu id  nitrogen p r io r  t o  the bubbling i n  of propane. Coagu- 
l a t i o n  resul ted i n  the experiment with s i l i c a ,  but i n  the experiment w i t h  
acetylene black, a gel formed which showed shear-thinning properties and 
had a y i e ld  s t r e s s  estimated t o  be 30O-hOO dynes/cm2. 

c. Methane 

Methane contains the highest percentage of hydrogen of any 
hydrocarbon, which might  give it the requis i te  a f f i q i t y  f o r  l i qu id  hydrogen, 
It is a lso  very low i n  density (about 0.4 g/cm3) and has a reasonably high 
fuel value. Hydrocarbons are representative of non-polar, e s sen t i a l ly  non- 
associated gel lants .  

Methane is  a so l id  a t  the boiling point of l i qu id  nitrogen. 
Accordingly, attempts t o  c rys t a l l i ze  methane as  f i n e  pa r t i c l e s  were made 
by adding it, as  'gas and as  l iquid,  t o  l iquid nitrogen. 
only  an apparent increase i n  volume of the LN2 was observed, indicating 
so lubi l i ty ,  and no insoluble material  was observed. 

However, on mixing, 

d. Ammonia 

Ammonia, l i k e  methane, has a l a rge  hydrogen content, and 
might therefore  have enough a f f i n i t y  f o r  l i qu id  hydrogen t o  be a s a t i s f ac to ry  
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par t icu la te  gellant.  Unlike methane, ammonia i s  a r e l a t ive ly  polar l iquid,  
nearly as  polar as  water, and i a  highly associated. Thus it repreaents an 
e n t i r e l y  d i f fe ren t  type of so l id  par t iculate  surface. 

Bubbling gaseous anhydrous ammonia i n t o  l iqu id  nitrogen pro- 
duced a cloudy appearance, and some crystals  formed on the s ides  of the 
Dewar flaek. However, when l iqu id  ammonia was added t o  l i qu id  nitrogen 
with high-shear mixing, an apparent solution resulted.  A t race  of carbon 
black f a i l e d  t o  nucleate crystal l iaat ion.  

In fu r the r  attempt8,liquid nitrogen was put i n  the enclosed 
inner vessel  of the l i qu id  hydrogen cryostat, t o  permit control of the 
atmosphere above it. A bleed-stream of helium w i t h  6 v/o ammonia, pre- 
cooled t o  -50°C by an acetone-dry-ice trap, was fed  i n t o  the space above 
the l i q u i d  nitrogen. The ammonia condensed as a cloud, the pa r t i e l e s  of 
which f e l l  in to  the l i qu id  nitrogen, forming a s lurry.  The pa r t i c l e s  ap- 
peared t o  be l e a s  than 0.1 p i n  size, as evidenced by the reddish color of 
transmitted l i gh t ,  due t o  d i f f rac t ion  around the small par t ic les .  The 
addition of helium and ammonia was continued, wi th  mechanical s t i r r i n g  of 
the nitrogen, unt i l  a s lu r ry  containing about 50 w/o of ammonia pa r t i c l e s  
had been formed, 
out. 

When m i x i n g  was stopped, the ammonia pa r t i c l e s  s e t t l e d  

Ammonia was thus successfully condensed as  f i n e  s o l i d  
pa r t i c l e s  from a precooled bleed-stream of helium and ammonia. 
p a r t i c l e s  formed may not have been f ine  enough t o  form a ge l  (and 
possibly there  was c r y s t a l  growth due t o  erolubility) but the technique, 
with refinements t o  achieve smaller par t ic le  s ize ,  should be applicable 
t o  l i qu id  hydrogen. 

The 

5. Surface Treatment of Gelling Agents 

Optimum gel lan t  performance i n  l i qu id  hydrogen may require a 
surface-active t h i r d  component, t o  form an oriented film on the g e l l a n t  
pa r t i c l e s .  
of sur fac tan ts  would function a t  cryogenic temperatures. 
such surfactants  are  usually added direct ly  t o  a mixture of ge l lan t  and 
l iqnid,  t h e i r  a f f in i ty  f o r  the l i qu id  enabling them t o  migrate t o  the 
sol id- l iquid interface.  If added t o  l i q u i d  hydrogen, such surfactant8 
Would freeze.  
and thus pre-orient the surfactant.  

It was not known whether the bonding and associat ive e f f ec t s  
Furthermore, 

It is  therefore necessary t o  precoat the ge l lan t  pa r t i c l e s  

A brief  invest igat ion was carried out t o  determine if surfac- 

Portions of pyrogenic s i l i c a  were t rea ted  
The 

t a n t s  funct ion a t  l i qu id  nitrogen temperatures and t o  serve a s  a model f o r  
ge l l an t  surfactant  addition. 
with 3 w/o of selected surfactants  i n  very d i lu t e  e ther  solutions,  
sur fac tan ts  had previously been shown t o  a f f ec t  ge l l ing  act ion i n  low- 
po la r i ty  l i qu ids  (1) s 
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These portions were dried a t  sO°C t o  remove the ether,  and tes ted  
f o r  ge l l ing  a b i l i t y  i n  l i qu id  nitrogen, using untreated s i l i c a  aa a control. 

Untreated s i l i c a  formed a g e l  a t  L.6 w/o. S i l i c a  t rea ted  w i t h  
Triton X-100 formed a poor ge l  a t  16 w/o. Deepite the normal appearance 
of the other four  t rea ted  s i l i c a s ,  they f a i l ed  t o  disperse i n  the l i qu id  
nitrogen. 

The observed e f f ec t  of Triton X-100 causing the need f o r  more 

Further experimentation with these and w i t h  other surfactants  
ge l lan t  indicates  t h a t  surfactant  effects  can occur under cryogenic con- 
di t ions.  
w i l l  be necessary t o  es tabl ish guide l i nes  f o r  t h e i r  use i n  LH2. 

B. Preparation of Fine Par t ic les  of Gellants 

1. Lithium Aluminum Hvdride (LiAlHi.) 

Lithium aluminum hydride is  normally available i n  lump form. It 
i s  soluble t o  some extent i n  ethers,  and insoluble i n  hydrocarbons, suggest- 
ing a simple solvent/non-solvent system f o r  prec ip i ta t ion  of f i n e  par t ic les .  

a. Ethyl Ether/Hexane 

Experiments were run i n  which the LiAlH4 was dissolved i n  
e thyl  ether,  and precipi ta ted by the addition of hexane, Evidence of re- 
act ion with the solvents, the formation of  a la rge  amount of dark, insolu- 
b l e  material, and an o i l y  prec ip i ta te  suggested tha t  another system might 
be be t te r .  

b. TetrahYdrofuradHeDtane 

Tetrahydrofuran (TRF), i n  which t h e  s o l u b i l i t y  of L i A l H 4  
appeared higher than i n  e thyl  ether,  and n-heptane were pre-treated with 
L i A n  A 10 w/o solut ion of L i A l H 4  
i n  & was then prepared and f i l t e r e d  through f r i t t e d  glass. When 7 volumes 
of heptane were added w i t h  rapid agitation, an o i l  separated, which on 
standing 48 hours so l id i f i ed  i n t o  a white, c rys t a l l i ne  mass. 

t o  remove all reacting impurities. 

The supernatant l iqu id  was discarded and the c rys t a l l i ne  
material  was redissolved i n  t rea ted  THF, forming a c l ea r  solution. 
(5:l) was ch i l l ed  over l i qu id  nitrogen, and the THF solut ion added with 
high-shear mixing. Despite these conditions, the prec ip i ta te  was o i l y  i n  
nature and quickly agglomerated in  the bottom of the vessel .  

Heptane 

The behavior of the precipi ta te  indicated t h a t  it might 
be an ether-type solvate. 
a lower boi l ing solvent and boiling non-solvent were used. 
m i n u m  hydride was precipi ta ted by adding i ts  ethyl  e the r  solut ion dropwise 

In order t o  be t te r  separate solvent complexes, 
Lithium alu- 
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Table IV 

EFFECTS OF SURFACTANT COATINGS ON GELLING ABlLITY 
OF PYROGENIC SILICA I N  LIQUID NITROGEN 

Action on Gels 

I n  Room Temperature I n  LN2 

Pelargonic acid Enhanced Se t t led  
Liquids 

Triton X-100 (Octylphenyl e ther  None 
of polyethylene glycol) 

More Si02 
required . 

AMP (2-amino, 2 methylpropanol) Destroyed gel  Se t t l ed  

Duomeen T (Tallow diamine) Enhanced Se t t l ed  

Alamine 4 (Primary l au ry l  amine) S l igh t ly  enhanced Se t t l ed  
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b. Solvent/Non-Solvent Precipitation 

(1) Te trahydrofuradHeptane 
~ 

~ 

Attempts were made t o  p rec ip i ta te  LiBH4 as f i n e  par t ic les  
from a tetrahydrofuran (THF) - heptane system. 
i n  THF was prepared and f i l t e r ed .  
r a t i o  from 1:l upward, it fa i l ed  t o  m i x .  
ing in a "laboratory rniier!', the THF solution separated as  a d i s t inc t  layer,  
although TlIF and heptane are normally miscible. 

A 10 w/o solut ion of LiBH4 

I n  s p i t e  of prolonged high-shear m i x -  
When heptane was added t o  t h i s  i n  any 

t o  boiling hexane, with the ether  d i s t i l l i ng  instant ly .  
pa r t i c l e  precipi ta te ,  after col lect ion and drying, showed e l ec t ros t a t i c  
properties and a high tendency t o  agglomerate. 
0.43 g/cm3. 

The resul t ing f ine-  

The bulk density was about 

In the Whitby centrifuge sedimentation analysis f o r  par t ic le  
size,  it was not possible t o  overcome the  agglomerative tendency, and hence 
no size d is t r ibu t ion  data were readi ly  obtained. 
revealed many agglomerates of 100-200 p size, but  the individual par t ic les  
appeared t o  be no la rger  than 12 p, ranging down t o  1 p and smaller. 

Microscopic examination 

This l i thium aluminum hydride was given a preliminary t r i a l  
i n  l i qu id  nitrogen. 
pected because of the rather  la rge  quantity of coarse par t ic les ,  a t  45 w/o 
a thickened mixture w i t h  some evidence of ge l  s t ructure  and shear thinning 
resulted. 
material, l e d  t o  suspension of e f f o r t  wi th  LiAlHh. 

Although gell ing a t  a low concentration was not ex- 

Later, greater  success with LiBH4, a more desirable ge l lan t  

2. Lithium Borohydride (LiBHJ,) 

a. Par t ic le  Fracture Techniques 

The technique of preparing LiBH4 by prolonged grinding with 
mortar and pes t le  under an i n e r t  atmosphere ( N 2 )  i n  a dry box was used as 
an expedient t o  secure powdered material f o r  compatibility t e s t ing  with LH2. 
Experience indicates  t h a t  when long grinding times are  used, a modest f rac-  
t i o n  of submicron par t ic les  i s  obtained. 
l i t t l e  or no hazy background, normally indicative of submicron par t ic les ,  
but  the v i s ib l e  par t ic les  were i n  the 10 p s ize  range. This preparation 
was used i n  subsequent gel l ing of LH2. 

Microscopic examination revealed 

Microscopy indicated tha t  the LiBH4 recovered from the LH2 
experiment was somewhat f i n e r  than t h a t  added. 
a f a i n t  haze and the number of below 10 p par t i c l e s  apparently increased. 
It would seem t h a t  the c rys ta l s  may become b r i t t l e  enough a t  cryogenic 
temperatures t o  f rac ture  readily. 

There was the appearance of 
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(2) Ethyl Ether/Hexane 

The ethyl  ether/hexane technique worked out f o r  the pre- 
c i p i t a t i o n  of f i n e  -par t ic le  l i thium aluminum hydride (LiAlHh) was extended 
t o  LiBH4. 

first t rea ted  w i t h  lump L i A l H 4  t o  eliminate reactive impurities, and then 
d i s t i l l e d ,  LiBH4 was dissolved i n  ether,  the solut ion was f i l t e r e d ,  and 
it was then added slowly t o  boiling hexane a t  a r a t e  whereby most of the 
e the r  d i s t i l l e d  off as f a s t  as it  was added. ( In  s p i t e  of t h i s ,  the LiBH4 
which precipi ta ted out appeared t o  be an etherate,  as evidenced l a t e r ) .  
After all of the e ther  solut ion was added, d i s t i l l a t i o n  of hexane was con- 
tinued u n t i l  the boi l ing point indicated t h a t  no more e ther  was being re- 
moved. The precipi ta ted LiBH4 was collected by f i l t r a t i o n ,  and dr ied a t  
room temperature under vacuum, using a LN2 t r ap  t o  condense the vapors. 
While the drying was taking place, t h e  material gave the appearance of a 
f lu id ized  bed of f ine  powder, and the l iqu id  col lected i n  the t r a p  was 
mostly e thy l  ether.  

The ethyl  e ther  (solvent) and hexane (non-solvent) were 

The LiBH4 prepared i n  t h i s  manner appears t o  be much 
f i n e r  than t h a t  prepared by grinding. Microscopic examination showed the 
material  t o  be mostly needle-shaped unagglomerated p a r t i c l e s  i n  the 2-5 p 
size range, with a considerable haze probably due t o  sub-micron par t ic les .  
Standard sedimentation methods of siae estimation (e,g., The Whitby 
Technique) are  not d i r ec t ly  applicable here since they require the use of 
a l i qu id  sedim nta t ion  medium of substant ia l ly  lower densi ty  than the LiBH4 

LiBH4 formed a ge l  a t  19 w/o. 
( p  = 0.66 g/cm 3 ) . I n  a small-scale check w i t h  heptane, the precipi ta ted 

Additional material was prepared by t h i s  method f o r  
the l i q u i d  hydrogen gel l ing experiments. 

(3) Ethyl Ether/Toluene 

A s  the e thyl  ether/hexane method had apparently pre- 
c ip i t a t ed  an etherate  ra ther  than uncomplexed LiBH , a higher boi l ing non- 
solvent, toluene (b.p. llO°C) was substi tuted f o r  hexane (b.p. 69°C) t o  
f a c i l i t a t e  instant removal of the ether.  This appeared t o  be successful. 

Microscopic examination showed the p a r t i c l e s  of dried 
LiBH4 t o  be nearly spherical ,  w i t h  apparent diameters i n  the 1-12 IJ. range, 
and some evidence of a haze of smaller par t ic les .  
t h i s  mater ia l  formed a gel a t  28 w/o, as compared w i t h  l a w / o  f o r  the ether- 
hexane prec ip i ta ted  material .  It appears t h a t  the break-up of the etherate  
during vacuum-drying of the hexane-precipitated LiBH4 favored the formation 
of very fine par t ic les .  

I n  a trial with n-heptane, 
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N. GELATION OF L I Q U I D  HYDROGEN 

A. I n i t i a l  Gelling Experiments W i t h  Various Gellants - 
1. Carbon Black 

For the first gell ing tr ials,  carbon black (Type AB) was selected 
as the candidate gel lant .  
described i n  the Appendix. When it was added t o  the l i qu id  hydrogen, there 
was no rapid boiling o r  pressure surge, showing t h a t  it had been adequately 
pre-cooled, and there was no large heat release due t o  wetting by H2 or  H2 
adsorption. It was subsequently found that not a l l  of the carbon black was 
released from the bag, and the concentrations have been corrected f o r  t h i s  
value. Table V shows these concentrations. 

It was prepared and placed i n  t h e  cryostat  as  

The mixer was operated a t  blade-tip peripheral speed of 230 ft/min 
Although (computed from the rotat ional  speed as measured w i t h  'a Strobotac) . 

it had been planned t o  run it a t  higher speeds, there was a misalignment 
problem and excessive shaf t  whip. 
cates t h a t  carbon black probably does not require extreme shear t o  develop 
adequate gel l ing action. 

Experience i n  gell ing other f lu ids  indi-  

During mixing, t h e  carbon black was suspended i n  the l i qu id  hydro- 
gen, but each time the mixer was stopped, the carbon black s e t t l e d  rapidly. 
The volume t o  which it se t t l ed  was several times the volume occupied by 
t h i s  amount of d r y  carbon black, and increased s l igh t ly  after each ea r ly  
mixing. After repeated mixings, it se t t led  each time t o  t h e  same level ,  
indicating no fur ther  physical change i n  dispersion or wetting. The com- 
posit ion of the lower stratum was 1.4 v/o carbon black (28 w/o). 
panded sedimentation volume i n  other work has been taken as evidence of a 
threshold of in te rpar t icu la te  forces interaction, and of incipient  gell ing.  

This ex- 

The l i qu id  hydrogen w a s  forced t o  evaporate t o  various leve ls  
( thus increasing the concentration of gellant)  but  there was s t i l l  v is ib le  
s e t t l i n g  of the  carbon black. 

I n  the experiments w i t h  n-heptane and l i qu id  methane reported 

I n  LH2 the carbon black showed evidence of a 
above (Section I11 B. 2 ) ,  s l i gh t ly  more than 3 v/o of carbon black Type AB 
was required f o r  gell ing.  
threshold of in te rpar t ic le  forces a t  1 . 4  v/o. 
tha t  a gel l ing concentratton might be found somewhere between t h i s  concen- 
t r a t i o n  and 3+ v/o. 

It i s  reasonable t o  expect 

* General experimental procedures and cryostat are described i n  the Appendix. 
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Table V 

OBSERVATIONS DURING GELLING EXPERIMENT 
WITH L I Q U I D  HYDROGEN AND CARBON BLACK 

Total Carbon Blacks V o l u m e  
ml w/o v/o Remarks , , I 

After i n i t i a l  dispersal  550 9.5 0.4 Se t t l ed  
rapidly 

- - Condition 

After del iberate  evaporation 280 17  0.8 Se t t l e  d 

Composition of sedimented stratum 150 28 1.5 

* 4.0 g Type AB, p = 1.95’ g/cm3. 
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2. Pyrogenic S i l i c a  

This candidate gell ing agent was selected because it i s  a particu- 
l a t e  material  the behavior of which has  been w e l l  defined i n  many l iqu ids  
a t  room temperature and i n  t h i s  present work, i n  LN . It has perhaps the 
smallest pa r t i c l e  size,  and, nearly t h e  lowest densicy, of the commercial 
ge l lan ts  

The pyrogenic s i l i c a  was maintained a t  100°C under vacuum ( 5  p Hg 

The s i l i c a  was positioned i n  the cryostat  as described i n  
pressure) f o r  three hours t o  remove adsorbed gases. 
with helium gas. 
the Appendix. 

The vacuum was released 

When the gel lant  bag was opened and s i l i c a  mixed w i t h  LH2, there 
was no evidence of heat release (i.e., no flashing or bubbling occurred). 
Only 9.2 gmof the s i l i c a  l e f t  the container, s o  t h a t  concentrations are  
adjusted f o r  t h i s  value. 
630 ft/min f o r  20 minutes. 
cated t h a t  t h i s  l eve l  of s t i r r i n g  i s  adequate f o r  gel l ing action. 

The mixer was operated a t  peripheral speeds up t o  
Experience i n  gel l ing other f l u i d s  has indi-  

The material  i n  the inner vessel was semi-translucent from i n i t i a l  
suspension stages through gel  formation. 

Table V I  gives the successive important concentrations. 

When the volume had diminished by evaporation t o  220 m l ,  a gel  
formed (estimated y ie ld  stress 400 dynes/cm2) which showed no syneresis nor 
measurable evaporation on standing 30 minutes without stirring. 
manipulation of t h e  mixer indicated the gel was thixotropic.  
create  an i r regular  surface and induce flow by more rapid shearing. 
ge l  had t h e  appearance of a typical  adhesive gel.  

Hand 
One could 

The 

This gel  of LH2, while not suitable f o r  propellant use because 
of i t s  high i n e r t  (Si02) concentration (37.7 w/o o r  1.9 v/o), i s  interest ing 
as a possible cold flow simulant (average density = 0.11 g/ml vs 0.07 g/ml 
f o r  neat LH2) .  
particle-sized gel lants  f o r  pract ical  use. 

It a lso  demonstrates the need f o r  lower density, small- 

The ge l  appeared t o  be reasonably cohesive during f i n a l  evapora- 
t i o n  t o  dryness, i n  t h a t  it shrank and pulled away from the vessel  sides. 
There was no evidence of f l u f f y  s i l i c a  on the surface u n t i l  nearly dry. 
The s i l i c a  appeared t o  be unchanged af te r  complete evaporation. 

3. Lithium Aluminum Hydride 

This material  was selected f o r  investigation since i t s  density 
(p = 0.92) i s  considerably more favorable than t h a t  of s i l i c a ,  it has  f u e l  
value, and was usable as a reasonable prototype of other l i g h t  metal hydrides 
insofar  as  f ine-par t ic le  preparative methods were concerned. 
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Table V I  

OBSERVATIONS DURING GELLING EXPERIMENT 
WITH L I Q U I D  HYDROGEN AND SILICA 

~~ ~ 

Total Sediment 
Volume S i l i ca  

Condition ml w / o  4 0  - ml Comments 
Volume 

After i n i t i a l  dispersal 615 17.7 0.7 

Immediately pr ior  t o  
ge l  formation 

Formation of gel  

Thirty minutes a f t e r  
gel  formation 

260 34 1.6 

220 37.7 1.9 

220 37.7 1.9 

Gelled 

No sign of syneresis 



T E C H N I D Y N E  I N C O R P O R A T E D  

Fine pa r t i c l e  L i A l H  , prepared by the solvent/non-solvent technique 

gellant.  Its pa r t i c l e  s ize  was excessive, ranging from 121.~ t o  less than 1 1.~. 
For t h i s  t r i a l  it was outgassed under vacuum (5' p Hg pressure) a t  room tem- 
perature, and the pressure was released with helium. The gel l ing experiment 
was car r ied  out i n  s imilar  fashion t o  the s i l i c a  t r i a l ,  above. When the 
LiAlH4 was added t o  the LH2, there was no s ign  of react ion or  other heat 
release. 
e ight  inches of l iquid.  
were obtained. 
grinding of the ge l lan t  was accomplished, A gel  was observed a t  a volume of 
75 m l .  
and, based on the behavior of the disturbed surface, the material was thixo- 
tropic.  No syneresis was noted a f t e r  20 minutes of standing without mixing. 

(111. B. l., above) had ge l l e  9 LN2 and also heptane, requiring about 45' w/o 

The pa r t i c l e s  took an average o f  two seconds t o  f a l l  through 
After s t i r r i n g  and evaporation, the data of Table VI1 

The y ie ld  s t r e s s  was estimated t o  be between 200 and 300 dynes/cm 

The increase i n  sediment volume suggests t h a t  some high-shear 

2 

Beamed l i g h t  observation of the ge l  indicated that  it was translucent.  

"he L i A l H  content of the ge l  was 86 w/o and 32 v/o. "he high 
w/o and v/o values bere a t t r ibu ted  t o  larger-than-desired pa r t i c l e  size of 
t h e  L i A l H b .  

The ge l  shrank during f i n a l  evaporation, but unlike the s i l i ca ,  
did not p u l l  away from t h e  vessel  sides. 
appearance during the l a t e r  stages of evaporation. 

There was some powdery surface 

4. Lithium Borohydride 

This gel lant  ( p  = 0.66 g/cm3) is the most favorable of the present 
candidates on a density basis.  
oughly ground under an i n e r t  atmosphere was available, it was used t o  obtain 
compatibil i ty information. 

When the LiBH4 was added, there was no noticeable heat release.  
took an average of two seconds t o  s e t t l e  through eight  inches of LH2. 
sediment volume was 1 2 5  m l  a f t e r  s t i r r ing  a t  mixer peripheral  speeds of 450 
fpm. 
sudden change i n  sediment volume t o  190 ml, indicating pa r t i c l e  s i z e  reduc- 
t i o n  through high-shear grinding. 
t o  200 m l ,  an apparent ge l  formed with a y ie ld  stress of 200-300 dynes/cm2. 
The r e s u l t s  are  delineated i n  Table VIII. 
minutes without agi ta t ion,  there was s t i l l  no s ign  of syneresis. 

Although i n i t i a l l y  only a preparation thor- 

The LiBH was outgassed under vacuum ( 5  p Hg 
pressure) a t  room temperature, and t k e vacuum was released with hydrogen. 

The par t ic les  
The 

Reduction of LH2 volume coupled with continued ag i t a t ion  l e d  t o  a 

When the over-all volume was reduced 

After standing f o r  over 30 

Movement of the observation l i gh t  a t  various angles indicated the 
ge l  was semi-translucent, but not qui te  so translucent as t h a t  formed w i t h  
LiAlHh. It 
appeared t o  adhere somewhat t o  the vessel walls, and on fu r the r  evapora- 
t i o n  behaved i n  s imilar  fashion t o  t h e  L iAlHh  gel.  

Manipulation of the mixer indicated t h i s  gel  was thixotropic.  
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Table V I 1  

OBSERVATIONS DURING GEXLING EXPERIMENT WITH 
L I Q U I D  HYDROGEN AND LITHIUM ALUMm HYDRIDE 

Total L IA1H4 Sediment 
V o l u m e  Volume 

Condition - ml w / o  v/o ml C omen t s 
After i n i t i a l  dispersal  740 30.5 3.2 

Immediately p r io r  t o  
gel  formation 

80 85 30 

Formation of ge l  75 86 32 

Twenty minutes a f t e r  75 86 32 
gel formation 

70 

Gelled 

No syneresis 
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Table V I 1 1  

OBSERVATIONS DURING GELLING EXPERIMENT WITH 
L I Q U I D  HYDROGEN AND LITHIUM BQROHYDRIDE 

Condition 
After in i t i a l  dispersal 

After deliberate evapo- 
ra t ion  

Immediately pr ior  t o  
gel formation 

Formation of gel  

Twenty minutes a f t e r  
ge l  fornation 

Total. 
Volume 

ml 

LiBH4 Sediment 
Volume 

w/o 
29 

lr3 

60 

67 

67 

ml Comment 8 v/o 
h 

7 

13 

1 7  - Gelled 

1 7  - No sign of syneresis 
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The LiBH4 composition of t h e  gel was 67 w/o and 1 7  v/o. These 
r e su l t s  were par t icu lar ly  encouraging considering the large pa r t i c l e  s i ze  
preparation used. 
desirable gel composition. 

Further reduction i n  par t ic le  s ize  should produce a more 

After evaporation of t h e  hydrogen, the residual LiBH4 was checked 
f o r  gel l ing a b i l i t y  i n  heptane. 
than 20 v/o. 

It formed a smooth gel  a t  somewhat more 

5.  Aluminum Flake 

Flake aluminum with a average flake thickness of 0.04 ~ 1 .  was held 
under vacuum ( a t  5 p Hg pressure) a t  room temperature f o r  three hours. 
vacuum was released with ultra-pure hydrogen ( less  than 3 ppm impurities) a 

The cryostat  was assembled with 70 grams of t reated aluminum positioned i n  
the usual ge l lan t  bag. 

The 

Release of the aluminum in to  the LH2 produced a f i n e  dispersion 
which had a tendency t o  s e t t l e  within 4 seconds after the mixer was stopped. 
During ag i ta t ion  with mixer peripheral  speeds of 300-450 fpm, some gel-l ike 
material clung t o  t h e  glass  vessel  wall. When enough weight accumulated, 
the lump of material  s l i d  down t h e  glass  wall, leaving it clean, indicating 
t h a t  the gel was re la t ive ly  non-adhesive. Visual observation was very d i f -  
f i c u l t  due t o  the tendency of the ref lect ive powdered aluminum t o  coat the 
w a l l  of the vessel, both above and below the l iqu id  leve l .  

An opaque gel which was thixotropic ( a s  shown by i t s  behavior 
on the mixer s h a f t  and glass  vessel  walls) was formed a t  about the 350 m l  
level .  The aluminum content a t  t h i s  stage was 73 w/o and 7.5 V/O. 

6 .  Methane ( I n  S i tu  Gelation) 

Methane (CH4) contains the hig e s t  percentage (25%) of hydrogen, 
has the lowest density ( so l id  = 0.4 g/cm 4 ), and the highest possible energy 
contribution of the candidate ge l lan ts  under consideration. 

A preliminary attempt t o  condense f ine  pa r t i c l e s  of methane over 
A bleed stream of helium con- l i qu id  hydrogen was carr ied out as fol lows:  

ta ining 3.4 v/o methane, precooled by a l iqu id  nitrogen/Freon 113 slush 
trap, was passed i n t o  t h e  atmosphere above l iqu id  hydrogen i n  the cryostat .  
A cloud of methane par t ic les  formed, and the  par t ic les  f e l l  i n t o  the l i qu id  
hydrogen, some staying suspended and some settling t o  the  bottom. 
methane content of the bleed stream was gradually increased, over a 20- 
minute period, t o  75 v/o, without any plugging of the entry port  from pre- 
mature condensing of methane. 

The 

The bleed stream flow ra t e  was such t h a t  the amount of methane 
condensed during t h i s  t r i a l  was calculated t o  be only a f rac t ion  of t ha t  
which would be necessary f o r  gelling. 
densing methane by t h i s  method was established, and the methane c rys ta l s  

However, the f e a s i b i l i t y  of con- 
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appeared t o  be insoluble i n  l iqu id  hydrogen. A s  many of t h e  pa r t i c l e s  were 
large enough t o  be v is ib le ,  modifications of the apparatus and/or technique 
w i l l  be needed t o  achieve methane par t ic les  su i tab ly  small f o r  e f f i c i e n t  
gell ing.  

B. Gelation of LH2 With Selected Gellants 

O f  the  six gel lan ts  examined i n  the preliminary t r i a l s  above, a l l  
e i t he r  f o m d  ge ls  o r  showed promise of forming gels  under s l i g h t l y  a l t e r ed  
conditions. 
o r  1.9 v/o, making it a sui table  ge l lan t  f o r  reference comparisons and f o r  
ge l  property studies,  even though such a mass loading of i n e r t  ge l l an t  would 
not be tolerable  f o r  propulsion. Such a ge l  i s  a l s o  usable as  a cold flaw 
aimulant since its density i s  on ly  1.6 times t h a t  of l i q u i d  hydrogen, and 
i t s  volumetric loading ( i .e . ,  volume occupied by the pa r t i c l e s  and hence 
the parameter of i n t e r e s t  i n  flow interference investigation) i s  about t h a t  
expected f o r  more energetic gel lants .  Of the candidate energy-contributing 
gellanta,  l i thium borohydride appeared most  promising, gel l ing a t  67 w/o or  
1 7  v/o. 
peared t o  ge l  a t  73 w/o or 7.5 V/O. These three were then selected f o r  the 
remaining experimental work i n  t h i s  phase of the program. 

Pyrogenic s i l i c a  ( 7  mp par t ic les )  was effect ive,  a t  37.7 w/o 

Flake aluminum, although it gave d i f f i c u l t y  i n  observation, ap- 

1. Li th ium Borohydride (LiBHh) 

Fine pa r t i c l e  LiBH4 f o r  these gell ing experiments was prepared 
by the e thyl  ether/hexane prec ip i ta t ion  technique previously described 
(Section 111, B, 2 (b) ,  (2) ) It was outgassed under vacuum pressure 
( 5 p Hg pressure) a t  room temperature for  4 hours and back-fil led w i t h  
ultra-pure hydrogen, encased i n  a plas t ic  bag and placed i n  the cryostat  
as described i n  the Appendix. 

In  the first experiment, qelation occurred a t  72 w/o. The esti- 
mated y i e ld  s t r e s s  was 300 dynes/cm and the average evaporation r a t e  
3.4 ml/min. A s  the ge l  evaporated t o  dryness, an i n e r t  atmosphere was 
maintained and the dry LiBH4 powder recovered. 
showed it t o  be e s sen t i a l ly  unchanged, and a small sample gel led n-heptane 
a t  22 w/o, as before. 

Microscopic examination 

The same l o t  of LiBH4 was re-used f o r  a second gel l ing experi- 
ment, i n  which rheological measurements (see 
method) showed a y ie ld  s t r e s s  of 880 dynes/cm”and a marked shear-thinning 
ef fec t .  

below f o r  d e t a i l s  of 

The ge l lan t  concentration was 71r w/o. 

I n  a t h i r d  gel l ing experiment, again using the same (recovered) 
LiBH4, a g e l  w i t h  a yield s t r e s s  of 1100 dynes/cm2 was obtained a t  79 w/o. 
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The s l i g h t  decrease i n  gell ing a b i l i t y  each time the LiBH4 was 
recovered and re-used can probably be at t r ibuted t o  s l i g h t  deter iorat ion 
during handling of the dry powder, rather than t o  exposure t o  l i qu id  hydro- 
gen. This indicates good s t a b i l i t y  of LiBH4 as a gel lant .  

2. Pyrogenic S i l i c a  

This material consis ts  of amorphous spheres of s i l i c o n  diox de 
about 7 
The surface tends t o  chemisorb water, forming hydroxyl (or  s i lanol )  groups. 
Previous work (1) has shown tha t  m e x i m u m  gel l ing eff ic iency f o r  non-polar 
l iqu ids  occurs when the s i l i c a  is thermally dehydrated t o  the point t h a t  
less than 30 percent of the surface is hydroxylated. 

i n  diameter, and has a surface area of approximately 300 m 9 /g. 

For the f irst  experiment, the s i l i c a  used was dried 3 hours a t  
25OoC, under vacuum (5’ 1-1 Hg pressure), and the vacuum released with helium, 
as described i n  the Appendix. 

After adding l iqu id  hydrogen t o  the  inner vessel, the gel lant  
bag was opened by rotat ing the mixer shaft, and t h e  mixer operated u n t i l  
the s i l i c a  was well dispersed. I n i t i a l l y  each time the mixer was stopped 
the s i l i c a  se t t led ,  leaving v i s ib ly  clear l i qu id  hydrogen above. 
some evaporation of the hydrogen a gel  formed with an estimated y ie ld  
s t r e s s  grea te r  than 500 dynes/cm*, a t  a concentration of 36 w/o (1.8 v/o) 
s i l i c a .  

After 

It was believed t h a t  the helium and hydrogen purges of the 
cryostat ,  p r ior  t o  l iqu id  hydrogen loading, might a l s o  serve t o  purge the 
ge l lan t  powder. 
dried (overnight a t  15’0°C) and kept dry prior  t o  use. 
it formed a g e l  with a y ie ld  s t r e s s  of  1210 dynes/cm2. 
p r io r  outgassing of s i l i c a  i s  probably not necessary. 

Accordingly, f o r  the next t r i a l  the s i l i c a  was simply 
A t  35.3 w/o (1.8 v/o) 

This showed tha t  

Similar gels  were prepared, with comparable s i l i c a  concentrations 
and y ie ld  s t resses ,  f o r  the fur ther  study of evaporation rates,  rheology, 
and e f f ec t s  of vibrat ion and acceleration. These are  reported i n  subsec- 
t ions  C, D and E, below, 

3. Aluminum Flake 

One confirmatory gel l ing t r i a l  was made with f lake aluminum ( s i ze  
20 x 0.04 p) (Alcoa No. 422). 5’ p Hg 
pressure, a t  room temperature, and back-filled with helium, then positioned 
i n  the cryostat  as  described i n  the Appendix. 
gen a t  79 w/o (8 .1  v/o) aluminum. 
t o  coat the  viewing ports of t h e  cryostat made fur ther  visual  observations 
( i .  e., evaporation rate) d i f f i c u l t  . 

The aluminum powder was outgassed a t  

A ge l  formed i n  l i qu id  hydro- 
The opacity of the  ge l  and i ts  tendency 
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C. Evaporation Rate of LH2 Gels 

Evaporation r a t e  data were obtained f o r  each of several  LH2 gels, 
under the conditions where there was no LH2 i n  the Dewar surrounding the 
inner vessel. 
allowed t o  evaporate, wi th  intermit tent  mechanical s t i r r i n g  (15 sec every 
3 min), u n t i l  the gel  formed. 
time f o r  complete evaporation of the hydrogen from the ge l  recorded. 
Results a re  shown i n  Table IX, 

I n  a l l  cases an excess of LH2 was charged i n i t i a l l y ,  and 

S t i r r i n g  was then discontinued, and the 

In the case of the 72 w/o LiBH gel, there  was a t  f i rs t  a shrinkage 

After t h i s  there was no v i s ib l e  change, the ge l lan t  
of the ge l  w i t h  a drop i n  the v i s i b  i e surface, representing an evaporation 
r a t e  of 1 .2  ml/min. 
continuing t o  occupy the f u l l  volume while the LH2 evaporated. I n  the case1 
of the Si02 and A 1  f lake  gels, no shrinkage was v i s ib l e  a t  a l l ,  and the 
ra tee  reported are the average from g e l  formation t o  t o t a l  dryness, 

A control  run wi th  non-gelled LH2 showed a r e l a t ive ly  uniform ra t e  of 
evaporation, from 600 ml t o  dryneee, averaging 4.7 ml/min. With one ex- 
ception, the observed evaporation r a t e s  for  the gele were lese than half  
of thie .  
p le te  i e  experienced w i t h  opaque ge ls ) .  

(Diff icul ty  i n  obeerving the point a t  which evaporation i s  com- 

It i e  of i n t e r e s t  t h a t  j u s t  p r io r  t o  ge l  formation, t h a t  i e ,  w i t h  

This tende to support the hypothesi8 t h a t  
g rea t ly  thickened ra ther  than gelled l iquids,  the evaporation r a t e s  were 
s imi la r ly  markedly reduced. 
the observed reduction i n  evaporation rate i e  re la ted  t o  reduced convec- 
t i on#  

D. Rheology of LH2 Gels 

Measurement of the rheological properties or  gel led l i q u i d  hydrogen 
presented problems because of the extremely law temperatures a t  which none 
of the commercially available viscometers i s  su i tab le  f o r  operation. Al- 
though it i s  conceivable tha t  ce r t a in  of the standard viscometers could be 
modified t o  permit operation a t  20°K, there are other l imi ta t ions  i n  com- 
mercial viscometers i n  studying the complex rheological properties of gel  
systems. 

Perhaps the most important s ingle  rheological parameter i n  any gel  
f o r  rocket use i s  the y i e ld  s t r e s s ,  which i s  the m a x i m u m  force t h a t  can be 
applied t o  a gel  without causing structure breakdown which leads t o  flow. 
It is  the y i e ld  s t r e s s  of a gel  t h a t  inh ib i t s  flow of s p i l l e d  materials, 
t h a t  prevents sloshing i n  missile tankage, t h a t  leads t o  reduced evapora- 
t i o n  ra tes ,  and tha t  permits the suspension of so l id  p a r t i c l e s  t o  form 
s tab le  s l u r r i e s .  It i s  imperative tha t  measurements of the y i e ld  s t r e s s  
be made by increasing the s t r e s s  of the gel u n t i l  flow occurs ra ther  than 
by the often-used procedure of measuring apparent v i scos i ty  a t  gradually 
decreasing rates ,  and extrapolating t o  zero. 



~ ~~~ 

T E C H N I D Y N E  I N C O R P O R A T E D  

Table IX 

COMPARATIVE EVAPORATION RATE3 
FOR m L E D  AND NON-QELLED LH2 

Evaporation Rate, 
ml/min Gellant 

'Qpe n/O Just Before Gel Gel - 
None 0 6 . 7  ave. -* 

LiBH4 72 2 . P  

AI. flake 79 l.O* 

si02 

s i 0 2  

36 

39 

2 .o* 

- 

1.2 

(a> 

2.2 

3 .1  

(a} = not observable. 
* Thickened l iquid  but no y i e l d  stress. 
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Gels of the type which are sui table  f o r  use a s  l i qu id  propellants 
shear-thin rapidly with increasing r a t e  of shear. 
appreciable apparent v i scos i ty  when the applied shear s t r e s s  j u s t  exceeds 
the y ie ld  s t r e s s .  However, as t h e  shear r a t e  increases t o  tha experienced 

the apparent v i scos i ty  decreases t o  a value only s l i g h t l y  greater  than 
tha t  of the unmodified l iquid.  

Thus the g e l  w i l l  exhibi t  

by the ge ls  i n  tankage flow and i n  rocket in jec tors  (10 5 t o  10 8 sec'l), 

Since LH2 must be maintained a t  all times under a hydrogen or  helium 
atmosphere, the introduction of a viscometric device through the cover of 
the cryostat  i n t o  the 2-1/2-inch diameter inner vessel, a f t e r  ge l  prepa- 
ration, presented another problem. In order t o  provide controlled clear-  
ance f o r  shear-stress calculations it would be necessary t o  remove the 
mixer. 

Uti l ia ing experience i n  viscometer design from previous projects  
( 5 ,  6), a simple device was designed and constructed which combined the 
mixing impeller and viscometer rotor  on a single  s h a f t ,  as shown i n  
Figure 3. This s h a f t  was driven, from above the cryostat ,  by e i t h e r  a 
high-speed motor f o r  high-shear m i x i n g ,  o r  by a commercially available 
viscometer drive uni t ,  f o r  y ie ld  s t r e s s  and shear-stress/shear-rate data. 
The viscometer drive u n i t  consisted of a synchronous motor, multiple 
speed gear box and a torque dynamometer. 

The y ie ld  s t r e s s  of the gel i s  determined by momentarily engaging the 
gear box t o  apply torque i n  small increments. 
puted from the m a x i m u m  reading of the dynamometer before motion of the 
ro to r  i s  encountered. 
driving the ro tor  a t  a constant speed. 
the rotor ,  the shear r a t e  can be computed. 
from the reading of the torque dynamometer. 

The y i e ld  s t r e s s  i s  com- 

Shear stress-shear r a t e  values are  obtained by 
From the known constant speed of 

Shear s t r e s s  i s  calculated 

Table X l ists  the y ie ld  s t r e s s  values obtained f o r  the g e l s  made i n  
the l a t t e r  par t  of t h i s  program, and Figure 4 shows a shear-stress/shear- 
r a t e  curve f o r  a typicalLH2 ge l  w i t h  pyrogenic s i l i c a .  
a r e  generally i n  the range from 500 t o  1200 dynes/cm2, indicating reasonable 
res is tance t o  flow but i n  the pumpable region. 
shear-thinning a t  steady-state shear-stress/shear-rate points within experi- 
mental accuracy, the down curve of  t h e  hysteresis loop l a y  exactly on the 
upcurve. 
shear ra tes ,  indicates  negligible i r revers ible  t h i n n i n g  e f f ec t  (persistence 
of reduced apparent viscosi ty  as shear-rate i s  reduced). 
w i t h  p r io r  experience w i t h  l iqu id  propellants and par t icu la te  gel lants .  

The y ie ld  s t r e s ses  

The curve shows pronounced 

The absence of a hysteresis  loop, wi th  increasing and decreasing 

This i s  consistent 
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Figure 3 

HIGH-SHEAR IMPELLER AND COMPATIBLE 
VISC0MF:TER ROTOR ON SINGLE SHAFT 
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Table X 

YIELD STRFSSES OF LQ GELS 

Gellant Yield S t ress  
v/o d o  - dyne s/cm2 - me 

LiBH4 23 74 880 
- 

Si02 1.8 35.3 1210 

Si02 1.8 35.7 550* 

LiBH4 29 79.3 1110 

* Also shown on rheological curve, 
Figure 4. 
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100 1000 10,000 
Shear Stress ,  dynes/cm2 

Figure 4 
FLm CURVE FOR LH2 GELLED WITH S I L I C A  35.7 W/O (1.8 V/O) 

( Ident ica l  curve obtained w i t h  both increasing and decreasing shear) 
35 
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E. Vibration and Acceleration Resistance 

A l i qu id  hydrogen gel  prepared wi th  pyrogenic s i l i c a  was subjected t o  
low frequency vibratory acceleration by the following technique: 
1/2 inch i n  diameter by 1-inch high w a s  suspended i n  the gel  by means of a 
metal rod passing through the cover of the cryostat .  
t h i s  rod was attached t o  a vibrator  w i t h  a frequency of 120 cps and an 
accelerat ion r a t e  of 3 G. 

A cup 

The emerging end of 

The vibrator  was activated f o r  30 minutes, while the gel was observed 
f o r  any signs of change, (i.e.,  breakdown, syneresis, etc.1- 
t h i s  period there was no evidence of change i n  the gel properties. 

A t  the  end of 

To t e s t  resistance t o  shock acceleration, the emergent end of the rod 
holding the cup device described above was attached t o  a horizontal  t h i n  
s t e e l  plate.  The cup was f i l l e d  w i t h  gel and ra i sed  1 inch above the sur- 
face of the bulk of the ge l  i n  the inner vessel, and a c o l l a r  was attached 
t o  the rod so as  t o  permit on ly  1/2 inch of downward motion. A s t e e l  ball 
weighing 45 gmwas dropped 4 f e e t  t o  impact on the p l a t e  and impart a 14 0 
shock t o  the gel  i n  the cup. 
This was repeated f o r  a t o t a l  of 30 times, w i t h  no v is ib le  e f f ec t  on the 
ge l  . 

The gel  motion followed t h a t  of the cup. 
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V. GALCULATED EFFECT OF LiBHL GELLANT 

ON LH2 PROFJLSION PERFORMANCE 

In order t o  estimate the e f fec t  of LiBH on the propellant performance 
of LH , machine* calculations were made of t h e specif ic  impulse ( sh i f t i ng  
basis? f o r  two l eve l s  of LiBH4 content, and f o r  f luorine and oxygen, sepa- 
ra te ly ,  a8 the oxidizer. These r e su l t s  are shown i n  Table X I .  

Two conservative boundary assumptions of the required ge l lan t  concen- 
t r a t i o n  were used. When LiBH4 i s  prepared i n  p a r t i c l e  s ize  f i n e  enough t o  
gel LH2 a t  20 w/o (2.56 v/o), the degradation of theore t ica l  impulse would 
be only 4.5 percent f o r  performance w i t h  oxygen, or  2.5 percent f o r  per- 
formance with f luorine.  10 w/o ge ls ,  i f  achievable, would show decrements 
of 4.0 percent and 1.9 percent, respectively. 
analysis (1) shows tha t  gel l ing a t  2.56 v/o is  usually feas ib le  w i t h  
spherical  (or  nearly equiaxed) par t ic les .  

An e a r l i e r  theore t ica l  

The f a i r l y  small drop of theoret ical  I on increasing the ge l l an t  
concentration from 10 w/o t o  20 w/o may be Tgdicative t h a t  the Isp vs LiBH4 
concentration may be approaching a m i n i m u m  value a t  20 w/o, or  indeed the 
m i n i m u m  may l i e  between 10 w/o and 20 w/o. 
two ge l lan t  concentrations, and the exact shape of the ge l lan t  concentra- 
t i o n  vs Isp curve can not be specified from the available data. 
calculat ions made by Gordon and LeeM for the t r ip ropel lan t  systems H2-B-02 
and H2-Li-02 show the Isp passing through a minimum a t  metal concentrations 
of about 8 w/o. 
w/o. 

systems showed a continuous decrease of I 
t ra t ion ,  but the H2-LiF2 system passed first through a minimum then through 
a maximum with increasing l i thium concentration. 

Calculations were made a t  only 

Analogous 

Both curves show maxima a t  metal concentrations above 20 
values are approximately 3 percent greater  than the 

with increasing boron concen- 

The m a x i m u m  Is 
Isp of the non-metal P ized system. Similar calculat ions of the H2-B-F2 

SP 

* IBM 7094 
S L .  J. Gordon and J. B. Lee, "Metals as Fuels i n  Multicomponent Propellants", 

ARS Journal 32 600-606, 1962. 
-J 
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Table X I  

THEORETICAL PERFORMANCE OF GELLED 
(WITH LiBH4) L I Q U I D  HYDROGEN, WITH LOX AND LF2 

LiBH4 Ox/F’uel Rat io  I 3 P  Degradation 
( sec) * z - w/o - hi d i  ae r 

02 0 3 *5 391 

F2 

10 4-15 375.5 

20 3.4 373 3 

0 

10 

20 

8.1 

8.75 

8.0 

410 

402.1 

399.9 

4 
4 s  

1.9 

2.5 

* 1000 psis-14.7 psia, shifting equilibrium. 
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V I .  SUMMARY AND RECOMMENDATIONS 

This invest igat ion of the f eas ib i l i t y  of gel l ing l i qu id  hydrogen was 
directed toward the ult imate goals of (a)  reducing evaporation r a t e  (b) 
prevention of sloshing, and ( c )  s tab i l iz ing  s l u r r i e s  of additive s o l i d s .  
The loa density (0.07 g/cm3) and 1ou boiling point (20.3'K) of l i qu id  
hydrogen imposed ce r t a in  l imit ing conditions: 
a re  so l id s  a t  t h i s  temperature and no so lubi l i ty  (except helium, t o  a s l i g h t  
extent)  was expected. 

a l l  substances except helium 

These charac te r i s t ics  ruled out the swellable (i.e., pa r t ly  soluble) 
type of ge l lan t  from consideration, and l i m i t e d  the search t o  the u l t r a f ine  
par t icu la te  type. The range of candidate ge l lan ts  could a lso  include sub- 
stances whioh are gases or  l iqu ids  a t  ordinary temperatures, Different ia l  
density considerations indicated tha t  the required concentration of known 
(inert, commercially available) par t iculate  ge l lan t  would be so high as  t o  
cause intolerable  degradation of specif ic  impulse. 
'inert ge l lan ts  were included i n  the f e a s i b i l i t y  determination, a search 
was made f o r  low-density substances which might be prepared i n  u l t r a f ine  
pa r t i c l e s  t o  serve as gel lants ,  and which would contribute some f u e l  value. 

Although available 

For ercreening purposes, l i qu id  nitrogen and l i qu id  methane were used as 
cryogenic simulants f o r  LH2, and hexane and heptane were used as  room tem- 
perature simulants. Only those materiale which gelled both types of simu- 
lant were t r i e d  as ge l lan ts  f o r  LH2, and all successfully gel led it, a l b e i t  
a t  the expected r e l a t ive ly  high concentrations. 

Methane was b r i e f l y  t r i e d  as  a gellant i n  LH2, but  o n l y  t o  the extent 
of i n  s i t u  preparation of u l t r a f ine  par t ic les .  
investigated.  

Ammonia was a l so  b r i e f ly  

Table X I 1  summarizes the g e l l a n t s  tha t  appeared successful i n  LH2 and 
The r e l a t ive  gell ing effectiveness i s  best  indi-  indicates  t h e i r  sources. 

cated by the  volume percent of ge l l an t  required, which ignores density, 
while the weight percent determines the p rac t i ca l i t y  i n  a propellant system. 
By the volumetric c r i t e r i o n  the two iner t  ge l lan ts  were most effective,  a s  
w a s  expected. Aluminum f lake was the most e f fec t ive  of the fbels, followed 
by l i thium borohydride. 
flake i n  f i n e r  s ize ,  and it w i l l  always have the disadvantage of high mass 
loading, it presently appears t ha t  l i t h ium borohydride i s  the most promising 
fuel-gellant,  and t h a t  fur ther  e f f o r t  i s  warranted t o  prepare it i n  s t i l l  
f i n e r  pa r t i c l e s ,  

A s  there i s  l i t t l e  chance of preparing aluminum 

Calculations of the e f f ec t  on propulsion performance showed tha t  
20 H/O (2.56 v/o, a reasonable concentration f o r  an e f fec t ive  gel lant)  of 
LiBH4 i n  LH 
and only 2.3 percent f o r  LH2-LF2. 

would reduce specif ic  impulse only 4.5 percent f o r  LH2-LOX 
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Table X I 1  

SUMMARY OF GELLANTS FOR LH2 

Par t ic le  
Size, 

Qellant P 
S i l i c a  H-5 0.007 

Carbon black AB 0 mob2 

Aluminum, flake 20 x 0.04 

L i A l H 4  1-12 

LiBH4 2-15 

Concentration 
Density Required 

Preparation g/cm3 w/o V/O -- 
Commercial (a) 2m2 35 1.8 

Commercial (c)  2.7 73 7.5 
Precipitated (d)  0.92 86 32 

Precipitated (d) 0.67 67 1 7  

(a )  Cab-0-Si1 H-5, a commercial gellant.  
(b) Acetylene Black (highly graphitic),  frequently used as a gel lant .  
( c )  Finest  flake sim, Alcoa 422. 
(d) Finest  pa r t i c l e s  obtained by preparative techniques developed i n  t h i s  

(e) Estimated m a x i m u m  values based on inc ip ien t  ge l  a t  1.5 v/o and 
program, but not as  f i n e  as desired. 

extrapolation from hydrocarbons. 
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Certain other f u e l s  a l so  appear a t t rac t ive  by the c r i t e r i a  of low 
density coupled with appreciable energy contribution. Several of these 
appear amenable t o  preparation i n  u l t ra f ine  par t ic les ,  and it is  suggested 
t h a t  each be fu r the r  investigated. They are, as  follows: 

Boron 

Lithium Hydride 

Lithium Acetylide (LiC2H) 

Dilithium Acetylide (Li2C2) 

Diborane 

Pentaborane 

Decaborane 

Methane 

Ammonia 

Density, Isp with 02, 
dcm3 sec 
2.33 

0.82 263 

est. > 1 

1.65 

0.44 

0.62 

349 

32 7 

0.94 

0.4 309 

0.61 

Techniques and instruments f o r  measuring the rheological properties 
of LH2 gels ,  within the laboratory cryostat, were developed. The thixo- 
t rop ic  behavior of the LH gels was found t o  be s imilar  t o  t h a t  of ordi- 

nothing d i f f e ren t  i n  the general behavi r of a ge l  a t  20°K. Specir ical ly ,  
y i e ld  s t r e s ses  i n  the 500-1200 dynes/cm range were achieved, along with 
marked shear-thinning properties. 
s t ruc ture  a f t e r  shearing apparently precluded the appearance of hysteresis  
loops i n  the rheological curves. 
desirable f o r  LH2 gels. 

nary l i qu ids  gelled a t  am $ i en t  temperatures; t h a t  is, there  appears t o  be 

9 
The extremely rapid recovery of gel  

Such absence of hysteresis  appears highly 

Vibrational acceleration ( a t  120 cps and 3 G over a 30 minute period) 
and shock accelerat ion ( a t  14 G f o r  30 shocks) produced no detectable 
change i n  a typ ica l  LH2 gel.  

Evaporation r a t e  observations of gels i n  the laboratory cryostat  were 
subject t o  some experimental var iab i l i ty ,  but  generally showed ra t e s  only 
25-50 percent of tha t  of neat LH2 stored under the same conditions (which 
included as the pr incipal  heat leak the s ta in less  s t e e l  mixer shaf t ) .  
Larger scale  measurements are  indicated, and a re  expected t o  show even 
lower r a t e s  of evaporation. 
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Preparation of u l t r a f ine  pa r t i c l e s  of fuel-gellants was studied by 
(a)  various grinding methods, (b) development of solvent/non-solvent precipi-  
t a t i on  techniquee, and (c )  condensation of' gaees i n  the cryostat  i t s e l f .  . 

These methods should be carr ied f'urther in  development, concurrently wi th  a 
search f o r  =R sources of f i n e r  par t ic les .  

Saale-up engineering investigations are  recommended i n  the next phase 
of LH2 ge l  development, t o  eetabliah handling requirements and characterie- 
t i c s ,  and t o  obtain data sui table  fo r  extrapolation t o  full scale  storage 
and firing conditions. 
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APPENDIX 

A .  CRYOSTAT D E S C R I P T I O N  

For gelat ion s tudies  w i t h  l iqu id  hydrogen it was necessary t o  provide 
a vessel  w i t h  observation ports, provision f o r  moderate t o  high-shear mixing 
and rapid removal of t h e  heat generated by it, and a means f o r  maintaining 
constant volume i n  the working portion. 
sol ids  was also needed. 
metal o r  glass, had t h i s  combination of features.  
of engineers of The Marquardt Corporation*, a l i qu id  hydrogen cryostat  
(Figures A-1,  A-2)  was assembled and used w i t h  success i n  the experimental 
work of t h i s  program. The i n i t i a l  design proved sa t i s fac tory  t o  the point 
t h a t  only very minor modifications were necessary. 

A means for  introducing powdered 
N o  commercially available Dewar flask,  of e i t h e r  

With the  collaboration 

To anticipate the mixing conditions and energy release which would 
occur i n  the l iqu id  hydrogen cryostat ,  several types of laboratory mixers 
were evaluated i n  a cyl indrical  vessel of the approximate dimensions of 
the cryostat  proper. Standard propeller types of mixers are inapplicable 
i n  experiments of t h i s  nature, since high shear r a t e s  are  frequently re- 
quired f o r  the dispersion of par t iculate  gel lants .  

Suitable high-shear mixing and dispersion were effected with the use 
of a modification of t h e  dual-bladed laboratory blender impeller driven 
by a high-speed a i r  motor. This equipment was used successfully i n  the 
gelat ion experiments w i t h  l i qu id  nitrogen, operating a t  low epeed during 
the addition of the gellant,  followed by a short  high-speed burst  t o  com- 
p le te  the dispersion and t o  s e t  up the gel. A t  the maximum speed used, 
the calculated l i n e a r  speed a t  the t i p s  of the impeller was 830 f e e t  per 
minute. 
g rea te r  than w i t h  no mixing. This mixer was used i n  the i n i t i a l  l iqu id  
hydrogen investigations.  
same shaf t  as the special ly  designed viscometer rotor ,  i n  such a manner 
t h a t  nei ther  interfered w i t h  the operation of the other. 

Evaporation of nitrogen a t  t h i s  r a t e  of mixing was only 25 percent 

Later, t h i s  type of impeller was mounted on the 

In  the design of the cryostat ,  consideration was given t o  the e f f e c t  
of the heat  of mechanical ag i ta t ion  and possible l ibera t ion  of heat of 
adsorption of hydrogen when t h e  f ine ly  divided gell ing agents were dispersed 
i n  l i qu id  hydrogen, If t h e  quantity of heat represented by these two fac- 
t o r s  was of considerable magnitude, dangerously rapid f lash  evaporation of 
hydrogen might occur. Since these were unknown quantit ies,  it was decided 
t o  provide a means fo r  adsorbing heat l iberated during the experiment. 
This was accomplished by surrounding the t e s t  vessel  w i t h  a Dewar f l a sk  
containing l i qu id  hydrogen. 

* Messrs. John E. Ahern and George A .  Yankura of The Marquardt Corporation 
supplied cryogenic engineering guidance and collaborated w i t h  Technidyne 
Incorporated i n  the design, development of procedures, and checkout f o r  
t h e  experimental cryostat .  
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- V i s  c ome te r Re ad ou t 
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LH2 Feed Lines 
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-LN2 Feed Line 

Cryostat  Head \ 

,Cryostat Enclosure 
Figure A-2) 

Figure A-1  

(See 

-Ami1 ary Gases 

LABORATORY CRYOSTAT FOR GELLING OF L I Q U I D  HYDROGEN 
(LH2 del ivery Dewar located outside of w a l l )  
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Figure A-2 

L I Q U I D  HYDROGEN CRYOSTAT FOR GELATION EXPERIMENTS 

Semi-exploded view f o r  component ident i f ica t ion :  

A .  Working Vessel. Unsilvered, cy l indr ica l ,  g lass ,  2-1/2 inches i n  
diameter, approximately 14 inches long. 
and clamp-ring, sealed with an rrO" r ing  of Viton A. 

Closed by a copper flange 

B. Hydrogen Dewar Flask. 
Surrounds A .  Closure similar t o  A .  

To contain l i q u i d  hydrogen as heat shield.  

C. Nitrogen Dewar Flask. To contain l i q u i d  nitrogen. Surrounds B. 
Nitrogen interposes cold shield t o  prevent heat l o s s  t o  outside,, 
prevents a i r  in-leakage i f  seal  fa i i s .  
cap. 

F i t t e d  with loose Micarta 

D. Box Support. Heavy-walled, foam-plastic l ined .  

Each vesse l  i s  f i t t e d  with a copper-constantan thermocouple t o  measure 
temperatures. 
f o r  f i l l i n g ,  evacuation, and venting enter  vessels  through Swagelok bulk- 
head f i t t i n g s .  

Thermocouple tubes and the l/k-inch s t a i n l e s s - s t e e l  tubes 

Visual observation i s  through unsilvered s t r i p s  on f l a s k s ,  l i n e d  up 
with window cut  i n  support box. 
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The tes t  vessel  and the inner Dewar were closed by means of heavy 
copper flanges and clamping rings with Vitsn rings t o  s ea l  the flange 
t o  the glass .  
conductivity would reduce thermal gradients which could cause warping and 
l o s s  of the seal.  The tendency t o  warp was fur ther  reduced by making the 
par t s  r e l a t ive ly  thick,  
closure, t he  glass surfaces i n  coztaet with the "0" rings were bevelled 
outward s l i g h t l y  ( 2 " )  s o  t h a t  the rad ia l  contraction occurring during the 
cooling of the copper flange would tend to  increase the  compression of the 
rtO1l ring. The need f o r  these precautions a r i s e s  from the  f a c t  t h a t  these 
flanged closures must be made up a t  room temperature pr ior  t o  f i n a l  assem- 
b ly  of the cryostat .  If duricg cool-dcwa the seals  become loose, nothing 
remains except t o  abort the ru~, since they are inaccessible once the 
cryostat  is  assembled. 

Copper was used f o r  these pa r t s  because i t s  high thermal 

To fur ther  icsure t h e  maintenance of a t i g h t  

To prevent undue loss  of hydrogelt by evaporation from ambient heat 

This not only served as a heat shield,  
sources, the  inner Dewar f l a sk  was immersed i n  a l a rge r  Dewar which could 
be f i l l e d  with l iqu id  nitrogen. 
but a l so  could be used t o  preeooi the apparatus before admitting hydrogen. 
I n  addition, the s l i g h t  posit ive pressure of nitrogen, created by the 
loose-f i t t ing cover on the outer Dewar, prevents back-diffusion of a i r  
i n t o  l i qu id  hydrogen regions. 

A s  can be seen i n  the photograph of the assembly (Figure A-2) , the tes t  
vessel  is suspended from the flange of  the inner Dewar by means of three 
t h i n  s t a in l e s s  s t e e l  tie-rods. 
the micarta cover of the l iqu id  nitrogen vessel.  
e t e e l  delivery pipes and vacuum l ines  pass through the flanges by means of 
Swaglok bulkhead f i t t i n g s .  

The i m e r  f l a sk  i s  i n  turn  suspended from 
The necessary s t a in l e s s  

The complete cryostat  assembly was then surrounded by a sturdy woodep 
The box with Styrofoam f i l l e r  t o  support and ccshion t h e  glass  apparatus. 

purpose of t h i s  container was primarily t o  protect personnel from f ly ing  
glass i n  the event of glass  f a i lu re .  

Limited visual  observation of the contents of the t e s t  vessel was 
afforded by t h e  simple expedient of leaving a 1-inch wide unsilvered s t r i p  
on opposite s ides  of each of the Dewar flasks.  
l ined  up with corresponding sl i ts  i n  the Styrofoam-filled outer box, an 
explosion-proof spot-l ight behind the box provided ample illumination of 
the t e s t  vessel .  

When these sl i ts  were 

A thorough search f o r  pract ical  seals through which the ag i ta tor  shaf t  
could en ter  the illlzer Dewar and the test  vessel, turned up o n l y  one Itoff-the- 
she l f f1  model. 
use. The s e a l  selected f o r  use gave a good vacuum t igh t  seal and was reason- 
ably e f fec t ive  a t  low-positive pressure when properly aligned, but  wore un- 
evenly. 

Most of the available types were no t  designed f o r  cryogenic 

The sea l  was not vacuum-tight during s t i r r ing .  

The schematic diagram of the cryostat (Figure A-3) shows the complete 
assembly with i t s  associated valves and piping. 
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A * 

s 
LN-, Dewar 

Low Press Dewar 

Test Ve s sel 

He a t  
Exchanger 

Wooden Box 

Styrof o m  

Roof 

Vacuum 
W P  

Figure A-3 

SCHEMATIC DIAGRAM OF EXPERIMENTAL CRYOSTAT 

A. 
B. 
C .  
D. 
E.  
F. 
G. 
H. 
J. 
K. 
L. 
M. 

He Purge - Low Press Dewar 
He Purge - Test Vessel 
Gauge - Test Vessel 
Gauge - Low Press Dewar 
Vent - Low Press Dewar 
Vent - Test Vessel 
Vacuum - Low Press Dewar 
Vacuum - Test Vessel 
Relief Valve - Test Vessel 
Relief Valve - Low Press Dewar 
Check Valve 
Solenoid Valve 
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B. Cryostat Checkout With Liquid Hydrogen 

The LH2 Dewar and the inner cryostat  vessel  were evacuated, purged 
with helium, and f i l l e d  with LH2 t o  check evaporation r a t e  and the e f fec t  
of t he  high-shear mixing device. Evaporation from the inner vessel was 
quiescent ( l e s s  than 50 m l  per hour) when the mixer was not being operated. 
Thus the heat  path up the st irrer shaf t  and other connections was quite 
low. 

Mechanical problems of whip i n  the agi ta tor  shaf t  prevented high- 
speed operation of the mixer during t h i s  t r i a l ,  but a t  the maximum speed 
which was achieved, evaporation from the inner vessel  was less than 
100 m l  per  hour. A i r  sampling w i t h  a gaseous hydrogen detector i n  the 
v i c in i ty  of the rotat ing s h a f t  s ea l s  indicated only minor leakage of 
hydrogen t o  t h e  room, and t h a t  was mixed with nitrogen from the blanket. 

V i s ib i l i t y  was sa t i s fac tory  through the  unsilvered s l i ts  i n  the 
glass  Dewars. 

The heat  leak was s o  low t h a t  t h e  removal of LH a t  a reasonable rate 
by evaporation in to  the vent l i n e  required purging w f t h  ambient temperature 
helium. 

C. Method of Adding Gellants t o  LHa 

A l l  of the candidate gel lants  were outgassed a t  room temperature (or ,  
higher temperature, as s ta ted)  a t  5 p Hg pressure t o  remove adsorbed gases 
which would be so l id  a t  l iqu id  hydrogen tem erature, and the vaauum was 
released with helium (o r  ultrapure hydrogen P gas, It was expeated t h a t  
t races  of adsorbed helium, if any, should be diesolved by the l i qu id  
hydrogen. 
and positioned j u s t  under the cover of the inner cryostat  vessel, in such 
a manner t h a t  the bag would be cu t  open by a knife blade attached t o  the 
mixer shaf t .  
vapors during addition of l iqu id  hydrogen was avoided, and the ge l lan t  
became cooled t o  l i qu id  hydrogen temperature before addition t o  the 

Each gel lant  was sealed i n  a polyethylene bag under helium, 

In  t h i s  way, the loss of f lu f fy  gel lant  by entrainment in 

1 iqUi d v b 

When the  gel lants  were added t o  the l i qu id  hydrogen, there  was no 
rapid boi l ing o r  pressure surge, showing tha t  they had been adequately 
pre-cooled, and there was no large heat release due t o  wetting by He o r  
adsorption. This technique proved sat iafactory and was used, with only 
minor modifications, f o r  a l l  LH2 gelling t r i a l s .  
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